MODELLING SPEECH QUALITY FOR NARROWBAND AND WIDEBAND SILK CODEC FOR VOIP APPLICATIONS

Mohammad Goudarzi, Lingfen Sun, Emmanuel Ifeachor University of Plymouth School of Computing and Mathematics

Overview

- Introduction
- SILK Codec
- Overview of speech quality models
- Testbed setup
- SILK quality modelling based on E-model
- Model's performance
- Subjective evaluation of the model

Summary

Introduction

- VoIP networks , Skype
- Factors affect speech quality
- Proprietary software, open-source codec
- How to measure speech quality

SILK Codec

Speech codec and compression format

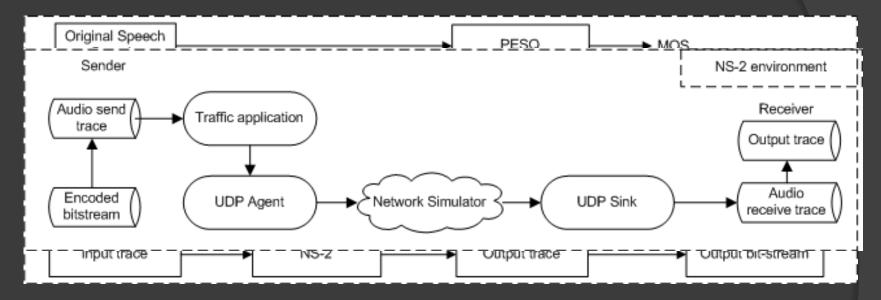
develo	Mode	Fs (Hz)	BR(kbps)	
o Sun	Narrowband	8000	6 – 20	
	Mediumband	12000	7 – 25	cordless
o Exp nho	Narrowband Mediumband Wideband	16000	8 - 30	LOIUIESS
	Super Wideband	24000	12 – 40	
	Ty available to	time party	03013	

• Highly scalable codec

- Network bandwidth
- Send bitrate
- Complexity

Overview of measurement methods

- Subjective methods
- Objective models
 - Computational models
 - E-model
 - Regression based models
 - Machine learning
 - Signal-based models
 - PESQ (ITU-T P862) and PESQ-WB
 - POLQA (ITU-T P.863)


Speech quality measurement models

- Measure the end-to-end quality (MOS)
- Impact of network conditions (i.e., packet loss, delay, etc.)
- Maintain a good service quality during the call
- Application level adaptation
 - Bitrate
 - Sampling frequency
 - Packetization
 - Inband FEC
- Online monitoring and control

Aims

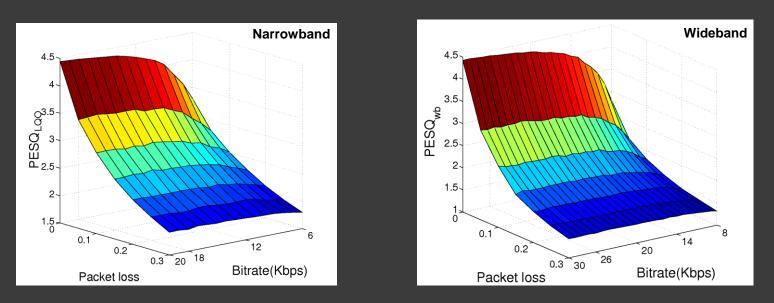
- Low complexity, reliable measurement model to quantify the speech quality for SILK codec
- The model can be used in adaptation, FEC tuning and user satisfaction measurement
- Use both application level and network level parameters to predict the speech quality of VoIP calls.
- Can have direct applications in monitoring and adaptation of VoIP applications

Testbed setup

Packet loss (0% to 30% with 5% intervals)

16 British English speech samples (ITU-T P.50)

- 8 male and 8 female
- I5 different initial seeds

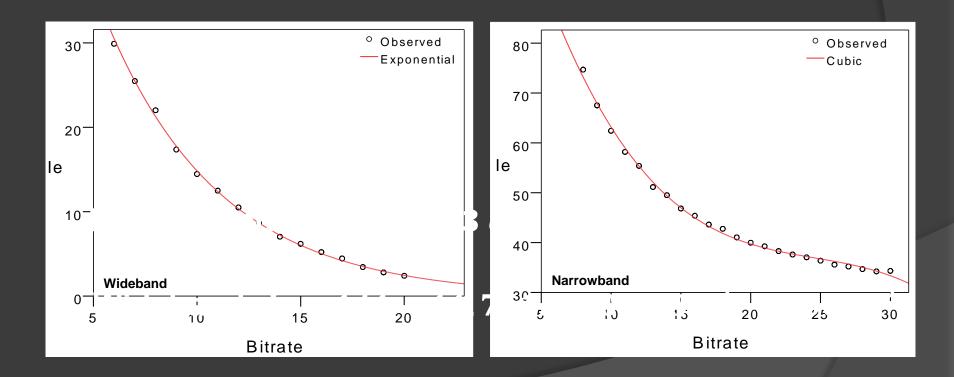

Modelling based on E-model *E-model (ITU-T G.107) :*

 $R = R_o - Id - Ie + A$

- R_o: basic signal-to-noise ratio (SNR)
 - 93.2 for NB
 - 129 for WB
- *Id* : is the impairments caused by delay factors
- *Ie* : includes distortions by codec and packet loss
- A: Advantage factor.

$R = R_o - Ie(bitrate, loss)$

Modelling *Ie.eff*


 $R = 3.026MOS^3 - 25.314MOS^2 + 87.060MOS - 57.336$

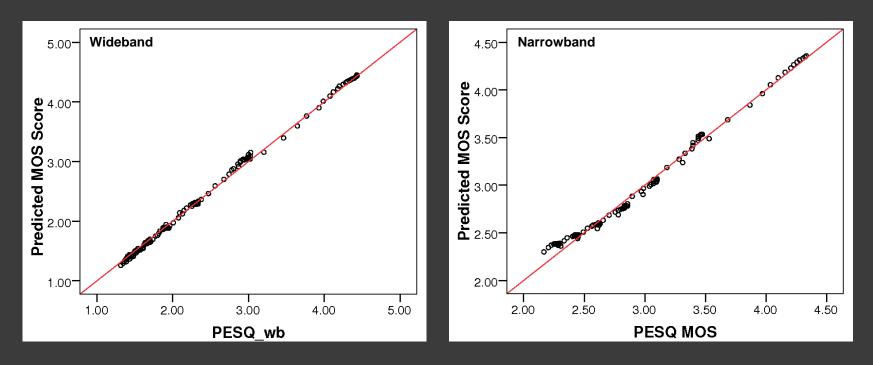
$$Ie.eff = Ro - R$$

$$I_{e.eff} = I_e + (R_0 - I_e) \frac{Ppl}{Ppl + Bpl}$$

Modelling *Ie*

Ie values are obtained by taking the *Ie.eff* values in 0% packet loss. Each bitrate level, has a fixed *Ie* value.

Modelling **Bpl**

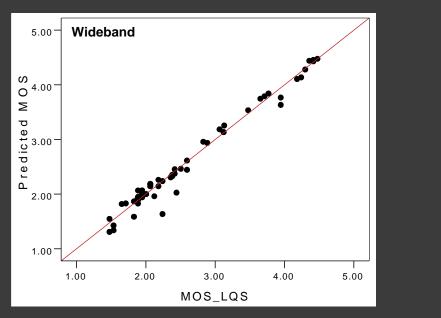

 Non-linear regression analysis of the model with our training set

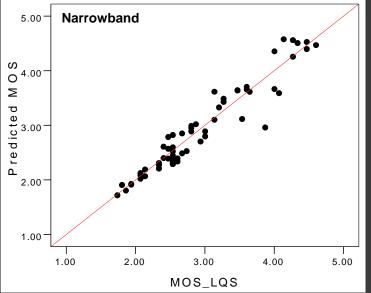
Ie. eff values obtained in the previous step

 $Bpl = \propto_0 + \propto_1 B + \propto_2 B^2 + \propto_3 B^3$

Coeff	NB	WB
\propto_0	36.836	122.617
\propto_1	-4.893	16.391
∝ ₂	0.287	0.011
∝ ₃	-0.006	0
r ²	99.94%	99.8%
RMSE	0.9922	0.9871

Model vs PESQ results


WB mode : 98%


NB mode : 99%

Subjective evaluation of the model

- Two sets of subjective tests were carried out for NB and WB samples according to ITU-T P.800 recommendation.
- Sessions were conducted in 2 separate days
 - 60 Samples per session divided into 4 groups
 - Samples were randomly assigned for each user

Subjective results

Measure	WB	NB
r ²	97.83%	91.86%
Max error	0.59	0.901
Min error	-0.190	-0.486
RMSE	0.1362	0.2272

Conclusion

- Developed a regression-based model, that can measure the speech quality of VoIP calls for Skype's SILK codec for VoIP applications
- The model is a reference-free, regression-based model based on sender bitrate and packet loss parameters
- Validated our developed model with subjective test results
- Correlation of 91% for narrowband and 97% for wideband.
- Can be implemented in mobile devices or softphones
 - Monitoring, control, adaptation and tuning for optimal user satisfaction in real time
- Aspects of this work are generic and can be adopted to other multi-rate codecs

Thank you

• Q & A

Contact information

• WEBSITE: http://www.tech.plym.ac.uk/spmc/

• EMAIL:

Mohammad Goudarzi: <u>mgoudarzi@plymouth.ac.uk</u> Dr Lingfen Sun : <u>lsun@plymouth.ac.uk</u> Prof. E Ifeachor : <u>eifeachor@plymouth.ac.uk</u>